AIS-INMACA: A Novel Integrated MACA Based Clonal Classifier for Protein Coding and Promoter Region Prediction
نویسندگان
چکیده
Most of the problems in bioinformatics are now the challenges in computing. This paper aims at building a classifier based on Multiple Attractor Cellular Automata (MACA) which uses fuzzy logic. It is strengthened with an artificial Immune System Technique (AIS), Clonal algorithm for identifying a protein coding and promoter region in a given DNA sequence. The proposed classifier is named as AIS-INMACA introduces a novel concept to combine CA with artificial immune system to produce a better classifier which can address major problems in bioinformatics. This will be the first integrated algorithm which can predict both promoter and protein coding regions. To obtain good fitness rules the basic concept of Clonal selection algorithm was used. The proposed classifier can handle DNA sequences of lengths 54,108,162,252,354. This classifier gives the exact boundaries of both protein and promoter regions with an average accuracy of 89.6%. This classifier was tested with 97,000 data components which were taken from Fickett & Toung , MPromDb, and other sequences from a renowned medical university. This proposed classifier can handle huge data sets and can find protein and promoter regions even in mixed and overlapped DNA sequences. This work also aims at identifying the logicality between the major problems in bioinformatics and tries to obtaining a common frame work for addressing major problems in bioinformatics like protein structure prediction, RNA structure prediction, predicting the splicing pattern of any primary transcript and analysis of information content in DNA, RNA, protein sequences and structure. This work will attract more researchers towards application of CA as a potential pattern classifier to many important problems in bioinformatics.
منابع مشابه
An Extensive Repot on the Efficiency of AIS-INMACA (A Novel Integrated MACA based Clonal Classifier for Protein Coding and Promoter Region Prediction)
This paper exclusively reports the efficiency of AISINMACA. AIS-INMACA has created good impact on solving major problems in bioinformatics like protein region identification and promoter region prediction with less time (Pokkuluri Kiran Sree, 2014). This AIS-INMACA is now came with several variations (Pokkuluri Kiran Sree, 2014) towards projecting it as a tool in bioinformatics for solving many...
متن کاملIN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction
Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope f...
متن کاملAIS-MACA- Z: MACA based Clonal Classifier for Splicing Site, Protein Coding and Promoter Region Identification in Eukaryotes
Bioinformatics incorporates information regarding biological data storage, accessing mechanisms and presentation of characteristics within this data. Most of the problems in bioinformatics and be addressed efficiently by computer techniques. This paper aims at building a classifier based on Multiple Attractor Cellular Automata (MACA) which uses fuzzy logic with version Z to predict splicing sit...
متن کاملAn Extensive Report on Cellular Automata Based Artificial Immune System for Strengthening Automated Protein Prediction
Artificial Immune System (AIS-MACA) a novel computational intelligence technique is can be used for strengthening the automated protein prediction system with more adaptability and incorporating more parallelism to the system. Most of the existing approaches are sequential which will classify the input into four major classes and these are designed for similar sequences. AIS-MACA is designed to...
متن کاملMultiple Attractor Cellular Automata (MACA) for Addressing Major Problems in Bioinformatics
CA has grown as potential classifier for addressing major problems in bioinformatics. Lot of bioinformatics problems like predicting the protein coding region, finding the promoter region, predicting the structure of protein and many other problems in bioinformatics can be addressed through Cellular Automata. Even though there are some prediction techniques addressing these problems, the approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1403.5933 شماره
صفحات -
تاریخ انتشار 2014